Selective functionalization of In2O3 nanowire mat devices for biosensing applications.
نویسندگان
چکیده
A strategy to covalently attach biological molecules to the electrochemically active surface of indium oxide nanowire (In2O3 NW) mat devices is presented. A self-assembled monolayer (SAM) of 4-(1,4-dihydroxybenzene)butyl phosphonic acid (HQ-PA) was generated on an indium tin oxide (ITO)-coated glass and In2O3 NWs surface. The chemical steps required for surface derivatization were optimized on an ITO surface prior to modifying the In2O3 NWs. The hydroquinone group contained in the HQ-PA SAM was electrochemically oxidized to quinone (Q-PA) at +330 mV. The monolayer of Q-PA was allowed to react with a thiol-terminated DNA. The DNA was paired to its complementary strand tagged with a fluorescence dye. Attachment of DNA was verified using fluorescence microscopy. A device was subsequently prepared on a SiO2-supported mat of In2O3 NWs by depositing gold electrodes on the mat surface. The reaction strategy optimized on ITO was applied to this In2O3 NW-based device. Arrays of In2O3 NWs on a single substrate were electrochemically activated in a selective manner to Q-PA. Activated In2O3 NWs underwent reaction with HS-DNA and gave a positive fluorescence response after pairing with the dye-DNA. The unactivated In2O3 NWs gave no response, thus demonstrating selective functionalization of an In2O3 NW array. This can be considered a key step for the future fabrication of large-scale, inexpensive, nanoscale biosensors.
منابع مشابه
High-performance transparent conducting oxide nanowires.
We report the growth and characterization of single-crystalline Sn-doped In2O3 (ITO) and Mo-doped In2O3 (IMO) nanowires. Epitaxial growth of vertically aligned ITO nanowire arrays was achieved on ITO/yttria-stabilized zirconia (YSZ) substrates. Optical transmittance and electrical transport measurements show that these nanowires are high-performance transparent metallic conductors with transmit...
متن کاملIn2O3 nanowires as chemical sensors
We present an approach to use individual In2O3 nanowire transistors as chemical sensors working at room temperature. Upon exposure to a small amount of NO2 or NH3 , the nanowire transistors showed a decrease in conductance up to six or five orders of magnitude and also substantial shifts in the threshold gate voltage. These devices exhibited significantly improved chemical sensing performance c...
متن کامل“Modeling Memristive Biosensors”
In the present work, a computational study is carried out investigating the relationship between the biosensing and the electrical characteristics of two-terminal Schottkybarrier silicon nanowire devices. The model suggested successfully reproduces computationally the experimentally obtained electrical behavior of the devices prior to and after the surface bio-modification. Throughout modeling ...
متن کاملSide‐Gated In2O3 Nanowire Ferroelectric FETs for High‐Performance Nonvolatile Memory Applications
A new type of ferroelectric FET based on the single nanowire is demonstrated. The design of the side-gated architecture not only simplifies the manufacturing process but also avoids any postdeposition damage to the organic ferroelectric film. The devices exhibit excellent performances for nonvolatile memory applications, and the memory hysteresis can be effectively modulated by adjusting the si...
متن کاملDirect real-time detection of single proteins using silicon nanowire-based electrical circuits.
We present an efficient strategy through surface functionalization to build a single silicon nanowire field-effect transistor-based biosensor that is capable of directly detecting protein adsorption/desorption at the single-event level. The step-wise signals in real-time detection of His-tag F1-ATPases demonstrate a promising electrical biosensing approach with single-molecule sensitivity, thus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 127 19 شماره
صفحات -
تاریخ انتشار 2005